Search results

Search for "E. coli" in Full Text gives 60 result(s) in Beilstein Journal of Nanotechnology.

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • Department of Pharmaceutical Biomaterials and Medicinal Biomaterials Research Center,Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 10.3762/bjnano.15.9 Abstract A fast and sensitive aptasensor was developed using nanoplates with peroxidase activity as a novel approach. E. coli
  • . This nanobiosensor has the ability to specifically bind to E. coli, increasing the peroxidase activity of the apt-Ag/Pt NPL. Finally, the blue color of the solution in the contaminated water samples was increased in the presence of 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate and H2O2. The assay
  • can be completed in 30 min and the presence of E. coli levels can be distinguished with the naked eye. The absorbance at 652 nm is proportional to pathogen concentration from 10 to 108 CFU·mL−1, with a detection limit of 10 CFU·mL−1. The percent recovery for the water samples spiked with E. coli is 95
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • and RhBITC-BSA/PDA NPs penetrated and accumulated in both cell wall and inner compartments of Escherichia coli (E. coli) cells. The fluorescence signals were diffuse or displayed aggregate-like patterns with both labelled NPs and free dyes. RhBITC-BSA/PDA NPs led to the most intense fluorescence in
  • cells. Penetration and accumulation of NPs was not accompanied by a bactericidal or inhibitory effect of growth as demonstrated with the Gram-negative E. coli species and confirmed with a Gram-positive bacterial species (Staphylococcus aureus). Altogether, these results allow us to envisage the use of
  • protein and to determine whether they can enter and accumulate in bacterial cells. The investigation has been conducted with NPs made of polydopamine (PDA) and bovine serum albumin (BSA), and Escherichia coli (E. coli) bacteria as a bacterial model. Three different types of fluorescent BSA/PDA NPs have
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • block the monocytic membrane protein, as formerly described by Schaer and co-workers [27]. For a reference sample, the phagocytic capacity of monocytes was fully utilized for the uptake of FITC-labeled E. coli lysate over a period of 10 min at 37 °C (commercially available phagocytosis tests use lysate
  • rather than whole bacteria for the higher phagocytosis efficacy of lysates). For comparison, samples were prepared in which the cells were able to phagocytose either unlabeled E. coli lysate or HbMP in a pre-feeding step (approximately 100 HbMPs per leukocyte). The incubation period here was 120 min. In
  • confirmed with a reference sample, and the maximum MFI was established. Phagocytes from whole blood were able to take up FITC-labeled E. coli lysate unhindered for 10 min at 37 °C (reference). The monocyte population showed a distinct, intact phagocytosis ability (79.3% ± 9.5% FITC-positive monocytes
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • diagnostic tools. Based on the photothermal principle, very recently, Shirshahi et al. developed LFA strips for the detection of E. coli O157:H7 strains of bacteria. They used reduced graphene oxide as both tracer and photothermal signal amplification material. After the deposition of rGO on the test line
  • ], Colloids and Surfaces B: Biointerfaces, vol. 186, by V. Shirshahi; S. N. Tabatabaei; S. Hatamie; R. Saber, “Photothermal enhancement in sensitivity of lateral flow assays for detection of E-coli O157:H7”, article no. 110721, Copyright (2019), with permission from Elsevier. (This content is not subject to
PDF
Album
Review
Published 04 Oct 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • (P. aeruginosa and E. coli) and Gram-positive (S. aureus and S. epidermidis) bacteria was determined, and dose-dependent antibacterial effects were found. Keywords: Ag NPs; anticancer and antibacterial effects; caffeic acid; chitosan; one-pot synthesis; quercetin; U-118 MG and ARPE-19 cells
  • Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) and the Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) bacteria cause various infections [5]. These infections, formerly known as nosocomial infections, are now referred to as healthcare
  • strains of S. aureus (ATCC 25923), S. epidermidis (ATCC 12228), P. aeruginosa (ATCC 27853), and E. coli (ATCC 8739), which are generally opportunistic pathogens, were used in the study. The antibacterial activity of diluted nanoparticle solutions was investigated by the agar disc diffusion method. The
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • [41]. Recently, Bing et al. observed that CQDs with different surface charges had different antibacterial activities. Positively charged CQDs damaged the membrane of E. coli completely whereas negatively charged CQDs interacted only weakly with the bacterial membrane [42]. Uncharged CQDs did not show
  • any antibacterial activity against E. coli and B. suptilis. In this study, antibacterial testing of all samples was conducted against two bacterial strains, namely S. aureus and E. coli. The results presented in Table S1 (Supporting Information File 1) showed that CQDs/PU composites prepared from o
  • -phenylenediamine did not exhibit any antibacterial activity against E. coli or S. aureus even after treatment under blue light for 360 min. These results agree with the results presented in the sections above. The CQDs did not generate any type of ROS. They are uncharged as well. The presence of NH2 groups on
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • the textile support. After assessing their optical and mechanical properties, the antimicrobial properties of the functionalized textiles were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) strains. In addition to being flexible and adherent to the textile substrates, the
  • nanocomposites exhibited remarkable microbial growth inhibitory effects. Keywords: antimicrobial properties; C. albicans fungus; E. coli bacteria; photoinduced functionalized textile; silver/polymer nanomaterials; Introduction The proliferation of microorganisms is a major concern for health organizations
  • and plate diffusion assays) of AgNP@polymer nanocomposites-coated textiles against Escherichia coli (E. coli) and Candida albicans (C. albicans) strains. The mechanical properties (flexibility, adhesion, abrasion) were also studied using a Mini-Martindale device, a standard scratch test kit, scanning
PDF
Album
Full Research Paper
Published 12 Jan 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • , Liu et al. [52] prepared single-chain antibodies against Listeria monocytogenes (Lm) with an E. coli expression system, prepared colloidal gold by the trisodium citrate method, used colloidal gold as a tracer, optimized the preparation of colloidal gold probes, combined with purified scFv to prepare
PDF
Album
Review
Published 03 Nov 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • the same conditions; however, it achieved lower efficiencies. In addition, ZnO NPs were also tested regarding their antibacterial activity, and the results showed that the prepared ZnO samples had the highest (i.e., 100%) antibacterial efficiency against E. coli. Keywords: green synthesis; methylene
  • demonstrated against E. coli and S. aureus bacteria. As mentioned previously, plant extracts were used as common precursors for nanomaterial synthesis due to their relatively high levels of the steroids, saponins, carbohydrates, and flavonoids which act as reducing agents and phytoconstituents as capping
  • and zinc chloride salt. The antibacterial activity of the synthesized ZnO material against Escherichia coli (E. coli) was studied. In addition, the study also determined the ability of ZnO NPs to act as photocatalysts and to degrade dyes including MB and methyl orange (MO). Experimental Design
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • composition, surface structuring on the micro-/nanoscale, and the introduction of low-surface-energy compounds [62]. Various studies demonstrated that the adhesion of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli (E. coli) bacteria was significantly reduced on superhydrophobic coatings
  • –usher polymerization pathway in Gram-negative microorganisms involved in pili protein synthesis [79]. For instance, the inhibitor targets pilus chaperone PapD, thereby reducing the adhesion to cell lines by 90% [80]. These pilicides inhibit curli formation in uropathogenic E. coli by preventing the
  • pseudotuberculosis, and enteropathogenic E. coli [83][84]. Another protein-based antimicrobial strategy in nature is the use of antimicrobial peptides (AMPs) [85]. These molecules are short-length amphipathic peptide molecules (between 10 and 50 amino acids), usually with cationic charges and hydrophobic residues
PDF
Album
Review
Published 08 Sep 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • BBR NPs in water. Antibacterial activity The antibacterial activity of pure BBR and BBR NPs prepared at different concentrations against MRSA and E. coli O157:H7 was compared in vitro using the modified disk diffusion method. Figure 4 and Table 1 show the inhibitory zones of pure BBR (at the
  • saturation concentration of 2.0 mg/mL) and BBR NPs (2.0, 3.0, and 4.0 mg/mL) against MRSA and E. coli O157:H7. An inhibitory zone with a diameter of 15 mm was found for pure BBR against MRSA at a concentration of 2.0 mg/mL (Figure 4a). At the same concentration, BBR NPs gave a higher diameter of the
  • least 2.0 mg/mL. Higher concentrations of BBR could be obtained due to the nanoformulation. Thus, the antibacterial activity could be enhanced. In contrast, determining the inhibition zones against E. coli O157:H7 at different concentrations was very difficult (Figure 4b). Therefore, this method is
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • TiO2 nps to kill even desiccation-resistant microbes, their value has increased in the food, cosmetic, and drug industries. Recently, glass surfaces coated with silver and TiO2 nps showed promising results against bacteria S. aureus (Gram positive) and E. coli (Gram negative) as compared to the
  • TiO2 nps [83]. TiO2 supported on silica nanospheres was checked for its antibacterial activity against E. coli, and the result demonstrated a more effective growth inhibition than that of commercial TiO2-P25 under ultraviolet and visible light [84]. Copper is well known for its antimicrobial properties
  • [92]. Shabib and his colleagues published an interesting study on the synthesis of TiO2 nps from the root extract of W. somnifera and examined its broad-spectrum antibiofilm potential against E. coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, Listeria monocytogenes, Serratia marcescens
PDF
Album
Review
Published 14 Feb 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • the CCD method after precipitation, as well as after cross-linking, dissolution, and final washing steps are shown in Figure 1. The zeta potential of HbMP in phosphate-buffered saline (PBS), pH 7.4, was −8.51 ± 0.9 mV. The zeta potential in PBS, pH 7.0, of E. coli was −16 mV, that of S. epidermidis
  • bacteria were found in the fraction of the sediment. Influence of glutaraldehyde on bacterial growth E. coli cells cultivated with 0.02% glutaraldehyde at 37 °C showed a significantly reduced growth compared to the control group in normal growth medium (Figure 2A). However, the growth of bacteria was
  • ). Glutaraldehyde significantly inhibits the proliferation of bacteria under the given conditions. During cultivation of E. coli with the addition of glutaraldehyde at room temperature, there were also significant differences in growth rates compared to the control (Figure 2C). After a small increase in the optical
PDF
Album
Full Research Paper
Published 24 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • -stranded PIC, this solution was heated to 55 °C then cooled back to room temperature according to the instructions from the manufacturer. As DNA plasmids, GFP plasmids (16542: pBI-MCS-EGFP) were purchased from Addgen, propagated in DH5α competent E. coli bacteria, and purified using the QIAGEN EndoFree
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • International Licence, http://creativecommons.org/licenses/by/4.0/. (A) A κ-carrageenan-stabilized hydroxyapatite rod-shaped nanocomposite. (B) Antibacterial study using E. coli, S. aureus, B. subtilis, P. aeruginosa showing the bactericidal properties of the nanocomposite. (C) The nanocomposite shows
PDF
Album
Review
Published 18 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • analysis and differential scanning calorimetry. The antimicrobial properties of the Ag-NPs were investigated against E. coli and S. aureus. The potential of the Ag-NPs for industrial application was tested by dispersing them into low-density polyethylene. The importance of the chemical affinity between
  • 25922) and Staphylococcus aureus (ATCC 29213). This was achieved by inoculating the bacteria in selective culture media (rapid coliform broth agar for E. coli and salted manitol agar for S. aureus), followed by 24 h of incubation at 37 °C. After incubation, five colonies of each bacterial species were
  • , antimicrobial surface activity tests were performed for LDPE samples doped with Ag/HNT-8 and Ag/HNT-8/DIO. The tests were performed following the guidelines specified in the JIS Z2801 standard, and consist of preparing E. coli and S. aureus suspensions (analogous to the ones produced in the MIC analysis) and
PDF
Album
Full Research Paper
Published 05 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • /nanorobots, for example, the flagella or cilia of swimming microorganisms. Behkam and Sitti [45] suspended droplets of bacteria, such as E. coli, and polystyrene in a solution of water and glucose. After absorbing the glucose nutrient, the rotating flagella of the bacteria pushed the droplets forward, and
PDF
Album
Review
Published 20 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • activity against E. coli, Bacillus subtilis, and Staphylococcus aureus of spherical AgNPs of various sizes and concluded that their effectiveness increased with decreasing size, regardless of the bacterial strains [43]. On the other hand, studies indicate that the reactivity and antibacterial activity of
PDF
Album
Supp Info
Review
Published 14 May 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • field of cell biology for imaging various human and animal cells. These include cartilage [2], cancer [3], liver [4], kidney [5] and stem cells [6], as well as fibrin fibers [7]. To visualize viruses and their host organisms, HIM has so far been applied to image T4 phage-infected E. coli bacteria [8
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • including Escherichia coli (E. coli) and K. Pneumonia when the cell culture supernatant is used [268]. However, the main downside of bacteriogenic synthesis is the slow synthesis rate and large size distribution compared to other green methods [104][259]. The applications of bacteria-synthesized AgNPs can
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • nanopillar texture on the wing of a dragonfly Orthetrum villosovittatum was studied. In addition to imaging the wing alone, samples were prepared with E. coli bacteria on them, to study the bactericidal properties of the nanostructure. Along similar lines, the nanostructures on the wings of three different
  • fabrication (lamellae preparation and conductive coatings) have hindered the studies of phage–bacterium interactions in their natural microbial environments. HIM imaging of phages and phage–bacterium interactions were performed for the first time in 2017 in [17] for bacterial colonies of E. coli on an agar
  • prey cell is transformed into a bdelloplast, in which the predator elongates and divides. In a final step, the bdelloplast lyses and the Bdellovibrio offspring is released and ready to attack another cell. A HIM micrograph of the attachment of a Bdellovibrio to E. coli is shown in Figure 9. Again, it
PDF
Album
Review
Published 04 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • bacteria (inhibition zone diameter of E. coli: 22 ± 0.86 mm) and Gram-positive bacteria (inhibition zone diameter of B. subtilis: 23 ± 0.9 mm) [88]. Bio-reduction of silver nitrate with Parkia speciosa leaf extract generated spherical Ag NPs with an average particle size of 31 nm [89]. A major
  • antibacterial activity against S. aureus was followed by B. subtilis, E. coli and P. aeruginosa. By using latex extracted from an immature Papaya carica fruit and silver nitrate, spherical and highly stable Ag NPs were also obtained. The reduction in Gram-positive bacteria, such as E. faecalis and B. subtilis
  • , was lower than the reduction in Gram-negative bacteria, such as V. cholerae, P. mirabilis, E. coli, and K. pneumonia. ZnO NPs are of great interest because their synthesis is economical, safe and easy [72]. Vijayakumar et al. (2018) investigated the antimicrobial and antifungal effect of spherical ZnO
PDF
Album
Review
Published 25 Sep 2020
Other Beilstein-Institut Open Science Activities